Mains Answer Writing Latest Questions
Explain the differences between model-based and model-free reinforcement learning algorithms, and discuss the potential advantages and disadvantages of each approach in the context of solving a complex control problem, such as autonomous driving. Include a discussion on sample efficiency, scalability, and real-time performance.
Model-Based Reinforcement Learning
Definition: Model-based reinforcement learning (RL) algorithms learn an explicit model of the environment dynamics (transition model and reward function) during the learning process.
Advantages:
Disadvantages:
Model-Free Reinforcement Learning
Definition: Model-free reinforcement learning algorithms directly learn a policy or value function without explicitly modeling the environment dynamics.
Advantages:
Disadvantages:
Application to Autonomous Driving
Sample Efficiency:
Scalability:
Real-Time Performance: