एक परीक्षा में हिंदी, अंग्रेजी और गणित विषयों के पूर्णांक क्रमशः 120, 140 और 100 हैं। एक छात्र इन विषयों में क्रमशः 40%, 55% और 45% अंक प्राप्त करता है। वह विज्ञान विषय, जिसके पूर्णांक 180 अंक हैं, में कितने ...
To find the coordinates of the remaining angular points of a square given the endpoints of its diagonal, we can use the properties of a square and the midpoint formula. Let's denote the endpoints of the diagonal as ( A(3, 4) ) and ( B(1, 1) ). First, we need to find the midpoint ( M ) of the diagonaRead more
To find the coordinates of the remaining angular points of a square given the endpoints of its diagonal, we can use the properties of a square and the midpoint formula. Let’s denote the endpoints of the diagonal as ( A(3, 4) ) and ( B(1, 1) ).
First, we need to find the midpoint ( M ) of the diagonal ( AB ). The midpoint formula is given by: [ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) ] Substituting the coordinates of ( A ) and ( B ): [ M = \left( \frac{3 + 1}{2}, \frac{4 + 1}{2} \right) = \left( \frac{4}{2}, \frac{5}{2} \right) = \left( 2, 2.5 \right) ]
The midpoint ( M ) is also the center of the square. Since the diagonals of a square are equal and bisect each other at right angles, the other two vertices ( C ) and ( D ) of the square can be found by reflecting the endpoints ( A ) and ( B ) across the midpoint ( M ).
To find the coordinates of ( C ) and ( D ), we use the fact that the distance from ( M ) to ( A ) is the same as the distance from ( M ) to ( C ), and the distance from ( M ) to ( B ) is the same as the distance from ( M ) to ( D ).
The coordinates of ( C ) can be found by moving the same distance from ( M ) in the opposite direction of ( A ). The coordinates of ( D ) can be found by moving the same distance from ( M ) in the opposite direction of ( B ).
The vector from ( M ) to ( A ) is: [ \vec{MA} = (3 – 2, 4 – 2.5) = (1, 1.5) ] The vector from ( M ) to ( B ) is: [ \vec{MB} = (1 – 2, 1 – 2.5) = (-1, -1.5) ]
To find ( C ), we move from ( M ) in the direction opposite to ( A ): [ C = M – \vec{MA} = (2, 2.5) – (1, 1.5) = (1, 1) ]
To find ( D ), we move from ( M ) in the direction opposite to ( B ): [ D = M – \vec{MB} = (2, 2.5) – (-1, -1.5) = (3, 4) ]
However, we need to correct this as ( C ) and ( D ) should be distinct from ( A ) and ( B ). The correct coordinates of ( C ) and ( D ) are found by moving in the perpendicular direction to the diagonal. The perpendicular direction to ( \vec{MA} ) is ( (-1.5, 1) ) and to ( \vec{MB} ) is ( (1.5, -1) ).
Thus, the coordinates of ( C ) and ( D ) are: [ C = M + (1.5, -1) = (2 + 1.5, 2.5 – 1) = (3.5, 1.5) ] [ D = M – (1.5, -1) = (2 – 1.5, 2.5 + 1) = (0.5, 3.5) ]
Therefore, the coordinates of the remaining angular points of the square are ( (3.5, 1.5) ) and ( (0.5, 3.5) ).
See less
छात्र के प्राप्तांक: हिंदी: 120×0.40=48120 \times 0.40 = 48120×0.40=48 अंग्रेजी: 140×0.55=77140 \times 0.55 = 77140×0.55=77 गणित: 100×0.45=45100 \times 0.45 = 45100×0.45=45 संयुक्त अंक: 48+77+45=17048 + 77 + 45 = 17048+77+45=170 कुल अंक: 120+140+100+180=540120 + 140 + 100 + 180 = 540120+140+100+180=Read more
छात्र के प्राप्तांक:
संयुक्त अंक:
48+77+45=170
कुल अंक:
120+140+100+180=540
60% का लक्ष्य:
0.60×540=324
विज्ञान में अंक:
x+170=324⇒x=154
इसलिए, छात्र को विज्ञान में 154 अंक प्राप्त करने होंगे।
See less